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Consider n interacting lock-step walkers in one dimension which start at the
points {0, 2, 4,..., 2(n − 1)} and at each tick of a clock move unit distance to the
left or right with the constraint that if two walkers land on the same site their
next steps must be in the opposite direction so that crossing is avoided. When
two walkers visit and then leave the same site an osculation is said to take place.
The space-time paths of these walkers may be taken to represent the configura-
tions of n fully directed polymer chains of length t embedded on a directed
square lattice. If a weight l is associated with each of the i osculations the par-
tition function is Z (n)

t (l)=;
# (n − 1) t

2
$

i=0 z (n)
t, i l

i where z (n)
t, i is the number of t-step con-

figurations having i osculations. When l=0 the partition function is asymptot-
ically equal to the number of vicious walker star configurations for which an
explicit formula is known. The asymptotics of such configurations was discussed
by Fisher in his Boltzmann medal lecture. Also for n=2 the partition function
for arbitrary l is easily obtained by Fisher’s necklace method. For n > 2 and
l ] 0 the only exact result so far is that of Guttmann and Vöge who obtained
the generating function G (n)(l, u) — ;.

t=0 Z (n)
t (l) u t for l=1 and n=3. The

main result of this paper is to extend their result to arbitrary l. By fitting com-
puter generated data it is conjectured that Z (3)

t (l) satisfies a third order inho-
mogeneous difference equation with constant coefficients which is used to
obtain

G (3)(l, u)=
(l − 3)(l+2) − l (12 − 5 l+l2) u − 2l3 u2+2(l − 4)(l2 u2 − 1) c(2u)

(l − 2 − l2 u) (l − 1 − 4lu − 4l2 u2)

where c(u)=
1 − `1 − 4u

2u , the generating function for Catalan numbers. The nature
of the collapse transition which occurs at l=4 is discussed and extensions to



higher values of n are considered. It is argued that the position of the collapse
transition is independent of n.

KEY WORDS: Osculating walkers; polymer networks; critical exponents;
collapse transition.

1. INTRODUCTION AND SUMMARY

The problem of interacting random walks was considered by Fisher (1) in his
Boltzmann Medal Lecture where many applications in statistical physics
and chemistry were discussed. He introduced the term ‘‘vicious walkers’’ to
describe the behaviour of a set drunks who each perform a random walk
on a one dimensional lattice and if any two arrive on the same site they
shoot one another. More specifically he analysed the asymptotic behaviour
as t Q . of the probability P (n)

t that walkers starting at positions
{0, 2,..., 2(n − 1)} survive for at least t steps and found that

P (n)
t ’ 1/t

1
4

n(n − 1). (1)

A similar formula was given for the probability that the walkers survive
and reunite anywhere after t steps at spacing two apart but a different n
dependence was found for the exponent. These critical exponents were found
to be relevant to the physical applications considered. Later Forrester (2)

extended Fisher’s work to walkers near a cliff so that not only did the
walkers have to avoid one another but had to avoid stepping off the cliff.
The survival and reunion probabilities were found to have modified critical
exponents.

The space-time trajectories of vicious walkers may also be considered
as fully directed polymer chains embedded on a square lattice and which
are not allowed to touch one another (see Fig. 1 but with intersections
avoided). The polymer configurations which contribute to the survival
and reunion probabilities were called by Duplantier (3) ‘‘stars’’ and ‘‘water-
melons’’ respectively. He found critical exponent formulae for general
polymer networks embedded on an undirected square lattice and the cor-
responding formulae for directed networks, with and without a surface,
were found by Zhao et al. (4)

Fisher’s analysis (1, 5) used the method of images to express the number
of n-walk configurations as an n × n determinant the elements of which
were the numbers of single walk configurations. He then substituted an
asymptotic form for each element and was able to evaluate the determinant
and hence obtain the asymptotic form for any number of walkers. Later
Arrowsmith et al. (6) observed that walk configurations correspond to
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Fig. 1. Space-time paths of three osculating walkers. Each walker has made 21 steps and
there are 9 osculations.

integer directed flows which were shown to have polynomial dependence
on n and explicit polynomial formulae for the total number of star config-
urations and the number of watermelon configurations with an arbitrary
fixed endpoint were conjectured. Their results were based on the examina-
tion of flow configurations for small values of t. Essam and Guttmann (7)

were able to evaluate Fisher’s determinant (also known to combinatorics
community as the Gessel–Viennot determinant (8)) and thereby prove the
polynomial formulae for stars and watermelons with fixed endpoints. Also
simple recurrence relations were found for the total number of stars which
supported the formula of Arrowsmith et al. Exact results for the numbers
of watermelons with free endpoints are more difficult to obtain but recur-
rence relations were proven for each n [ 6. The order of the recurrence was
N 1

2 (n+1)M and the coefficients, which were polynomials in t, had degrees
which increased with n in an unpredictable manner. Critical exponents
obtained from these formulae and recurrence relations were in agreement
with Fisher’s asymptotic analysis.

An alternative approach to the enumeration of vicious walker config-
urations was used by Guttmann et al. (9) who found a mapping to Young
tableaux. Using known results in the theory of tableaux they were able to
prove both the fixed endpoint formulae and also the formula for the total
number of stars. The latter was known in tableaux theory as the Bender–
Knuth conjecture (10) of which there are now several proofs all of which
are very lengthy. Krattenhaler et al. (11) found corresponding formulae for
polymers in the presence of a wall by mapping the configurations to
simplectic tableaux. The Gessel–Viennot formulae for fixed endpoint con-
figurations in the presence of a wall had previously been evaluated by Brak
and Essam (12) who also included the number of wall contacts as a param-
eter. Recently a much neater proof of the free star formula without a wall
has been given by Nagao and Forrester (13) using a method from random
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matrix theory. (14) They were also able to find the k-point correlation func-
tions. A connection between vicious walkers and random matrix theory has
also been discussed by Baik. (15)

In this paper the walkers are not vicious. When two walkers arrive at
the same site, on the next step they are not allowed to pass and must move
away from one another on to the sites from which they arrived. In the cor-
responding polymer chain picture the chains can intersect but must have
no bonds in common. An intersection other than on the last step is said to
be an ‘‘osculation.’’ Figure 1 shows the space-time trajectories of three
osculating walkers with 21 steps and 9 osculations which may also be con-
sidered as a polymer network. It is also a configuration of the 6-vertex
model whereas networks obtained from vicious walkers have only 5 distinct
types of vertex.

The application considered here is to a polymer collapse transition.
Such a collapse may be induced by including a Boltzmann weight l with
each osculation. Suppose the initial points of the n-chains are at
{(0, 0), (0, 2),...(0, 2(n − 1)} and let z (n)

t, i be the total number of configura-
tions having i osculations, then the partition function is defined by

Z (n)
t (l) — C

# (n − 1) t
2

$

i=0
z (n)

t, i l
i (2)

The Boltzmann factor l i makes the chains mutually repulsive or attractive
depending on whether l < 1 or l > 1. The repulsive case is less interesting
since it is qualitatively similar to the non-intersecting chain network based
on ‘‘vicious walkers;’’ in the case l=0 the partition function Z (n)

t (0) is the
same, asymptotically, as the total number vicious walker star configura-
tions. This similarity persists into the attractive region as far as the collapse
transition point lc at which the chains begin to stick together. It will be
argued that lc=4 for any number of chains. The grand partition function

G (n)(l, u) — C
.

t=0
Z (n)

t (l) u t= C
.

t=0
C

# (n − 1) t
2

$

i=0
z (n)

t, i l
iu t (3)

will also be needed in studying the transition.
Another reason for studying the osculating walk model is that it is

similar to, but simpler than, the following interacting walk model related
to directed percolation. Arrowsmith et al. (6) showed that the number of
integer flows between a source u and sink v of strength n on a directed
percolation cluster has polynomial dependence on n. They also showed that
the expected number of such flows E(fuv(n)) in the limit n Q 0 gives the
pair connectedness. Finally it was observed that E(fuv(n)) for a source and
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sink separated by t-steps can be written as a sum over vicious walker
watermelon configurations with an overall weight (ps pb)nt and a weight
1/ps for each close encounter (i.e., each time two walkers come within dis-
tance two of each other) and a weight 1/pb for each pair of successive close
encounters. ;v E(fuv(n)) is like the grand partition above with u=(ps pb)n

and l i replaced by the factors 1/ps and 1/pb. The limit n Q 0 of the grand
partition function gives the expected cluster size.

The results of this paper for the osculating walk model are mainly
restricted to n=2 and 3 except at the collapse transition it is argued that
Z (n)

t (4)=2nt. The reason for this limitation is that the determinant for-
mula (1, 8) for the number of vicious walkers no longer applies since the
weights depend on the relative positions of the walkers and not just on the
bonds traversed. Brak (16) has conjectured a general formula for the gener-
ating function of n osculating walks for general l but with fixed endpoints.
This replaces the vicious walker determinant by a sum over permutations.
The formula also involves multiple summations and a further summation
over endpoints to obtain the formula for three walkers given here has not
been possible. The partition function for two walkers is easily found in
various ways (1, 17, 18) ( for example, see Section 2) but for n=3 we have
resorted to computer enumeration. However the partition function found is
conjectured to be exact although no proof has been found.

Recently Guttmann and Vöge (17) found an explicit formula for
G (3)(1, u), that is in the case when all osculating configurations are given
equal weight. The work here generalises their result to arbitrary l and this
is believed to be the first example of a soluble interacting walk model with
more than two walks having a variable interaction parameter. In ref. 17 the
method of differential approximants reviewed in ref. 19 was used to
determine a recurrence relation, having polynomial coefficients, satisfied by
the sequence of partition functions for increasing t. Although the recur-
rence relation was not proven, the values of t used made it inconceivable
that it would ever fail. For general l the same method leads to a recurrence
relation of order 5 with coefficients linear in t from which the generating
function may be deduced by solving a first order differential equation.
However in Section 3 a different approach is used which gives a much
neater recurrence relation with constant coefficients and an inhomgeneous
term which is the product of an exponential and a linear combination of
Catalan numbers Ct

2(l − 1)(l − 2) Z (3)
t − 2l(l2+3l − 8) Z (3)

t − 1+16l2Z (3)
t − 2+8l4Z (3)

t − 3=2 tRt (4)

where Rt=(l − 4)(l2Ct − 2 − 4Ct). The relation becomes homogeneous at
the collapse point l=4 at which point the simple solution Z (3)

t =8 t also
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satisfies the initial conditions. The form is motivated by the corresponding
relation for two walkers (Section 2) which we are able to derive from the
known generating function. (18) It is hoped that a similar approach may
work for more than three walkers if the appropriate form of the right-hand
side can be found. Also the relative simplicity of the relation gives rise to
the hope that a proof may be possible.

In Section 4 the asymptotic form of the partition function is obtained
in the limit t Q .. It is found that

Z (n)
t (l) ’ [m (n)(l)] t tg (5)

where the growth factor m (n)(l) varies continuously with l. G (n)(l, u), as a
function of u, will have at least one singular point on the positive real axis.
The closest such point will be at u (n)

c (l)=1/m (n)(l) and as u Q u (n)
c (l) from

below we find that, for l ] lc,

G (n)(l, u) ’ |u − u (n)
c (l)|−c (6)

where c=g+1.
Our results for the growth factor and exponents are summarised in

Table I. The collapse point is found to be same for two and three walks,
that is lc=4. This may be understood by considering the case when two
walkers arrive at the same site. In the case of osculating walkers there is
only one way for them to leave but if the walks were allowed to share the
same bond and to cross there would be 4 ways, so placing weight 4 on an
osculating vertex is equivalent to allowing the walks to move indepen-
dently. Thus for any number of walks lc=4, Z (n)

t (4)=2nt and the value
of g is therefore zero. For l > lc, G (n)(l, u) has several singular points on

Table I. Growth Factors and Exponents.

The Confluent Exponents at l=lc=4 Are Not Present for e=1

Two walks Three walks

m g ge m g ge

l < 4 4 −
1
2

−
3
2

8 −
3
2

−
5
2

l=4 4 0, −
1
2

−
1
2

8 0, −
1
2

−
1
2

l > 4
l

`l − 1
0 0

l
2

l − 2
0 0
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the real axis the positions of which depend on l. The collapse transition
is marked by a subset of these coming together at u=1/2n as l Q lc at
which point cancellation takes place leaving the simple pole G (n)(4, u)=
1/(1 − 2nu).

For l < 4 the growth factor m (n)(l)=2n and the exponent g is the same
as for vicious walker star configurations, that is from Fisher’s formula (1)

g=gS=−
n(n − 1)

4
(7)

These results are expected to be true for any number of walks.
For l > 4 the walks tend to stick together and for both two and three

walks the exponent is the same as that for a single walk (i.e., g=0). In this
region the growth factor varies with l and as l Q ., m (n)(l) ’ l

n − 1
2 which

is the expected form when the osculating walks are completely bound
together in a single rod-like configuration. In this configuration there is one
osculation every two steps in the case of two walks but one on every step
for three walks which explains the power of l. Again these results are
expected to be valid for any number of walks.

The model may be further generalised by including a weight factor e

whenever two walks terminate on the same site. The coefficient z (n)
t, i is now

replaced by z (n)
t, i (E)=; Nn/2M

f=0 z (n)
t, i, fef where z (n)

t, i, f is the number of n-walk
configurations having t steps and i osculations which make f intersections
on the final step. For l=0 and E=0 the partition function is exactly equal
to the number vicious walker star configurations whereas for the previous
model (E=1) the equality when l=0 was only asymptotic. For two or
three chains f=0 or 1, since only one walk can traverse a given bond,
so G (n)(l, u) is linear in e and we write G (n)(l, u)=G(n)(l, u)|e=1+
(e − 1) G (n)

e (l, u). In the case of two chains G (n)
e (l, u) is the partition func-

tion for watermelon configurations and for three chains it is the partition
function for networks in which the endpoints of just two of the chains are
joined together. Such networks have been called ‘‘ceratic.’’ (20) For general e

it is found that (2) still holds but the inhomogeneous part is replaced by
Rt(e)=(1 − e)(4Ct+1 − l2Ct − 1) − (l − 4e)(4Ct − l2Ct − 2). It is interesting that
the linear part of the recurrence relation is independent of e.

For l < 4, G (n)
e (l, u) has exponent ce=ge+1 where for two walks

ge=− 3
2 , the exponent for staircase polygons. (21) For three walks ge=− 5

2 is
the exponent for the ceratic network and is in agreement with the exponent
formula (4) for general fully directed polymer networks corresponding to
vicious walker configurations. The contribution of G (n)

e (l, u) to G (n)(l, u) is
of course asymptotically negligible and merges with the correction terms.
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For e ] 1 and l > 4 the asymptotic form is still dominated by a simple
pole the position of which is independent of e. Also for e ] 1, Rt(e) no
longer vanishes at l=4 and the t dependence of Z (n)

t (4) is not just a simple
exponential. When the l > 4 singularities of G (n)(l, u) merge as l Q 4 the
simple pole which is left behind for e=1 is augmented by the term
(e − 1) G (n)

e (4, u). This gives rise to an important confluent singularity
which has exponent ce=ge+1 where for two walks ge=− 1

2 , the exponent
for walks which are independent except that they must intersect after
t-steps. (7, 1) This exponent is the same for both two and three walk configu-
rations because in the latter case only two of the walks have a common
endpoint and the third walk is completely independent.

In Section 5 the formula for G (n)(l, u) is used to obtain z (n)
t, i (E), the

micro canonical partition function. It is found that for two and three
walkers z (n)

t, i (E) may be expressed as a linear combination of Ballot
numbers. This could also be the case for n \ 4.

2. TWO WALKS

The two walker problem may be solved exactly in various ways (1, 17, 18)

and we present results for this case as a guide to the solution of the three
walk problem. It is also of interest to compare the formulae for the two
problems since they have some common features.

First consider t-step configurations with no osculations and denote the
generating function by G (2)

0 (u).

• Configurations in which the walks terminate on the same site are
equinumerous with staircase polygons of length t+1 the number of which
is known (21) to be the Catalan number

Ct=
1

t+1
12t

t
2 (8)

having generating function

cg(u)= C
.

t=1
Ctu t=

1 − 2u − `1 − 4u

2u
(9)

which satisfies the equation

ucg2 − (1 − 2u) cg+u=0. (10)

• Configurations in which the walks terminate on different sites biject
to pairs of (t+1)-step walks which start together and never meet again.
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The generating function for such walks was shown in ref. 7 (Eq. (14)) to be
(1 − 4u)− 1

2 but includes the zero length configuration which must be sub-
tracted and configurations with t > 1 were counted twice because the walks
were considered distinguishable.

To keep account of the two types of configuration we give weight e to con-
figurations in which the walks end on the same site thus, using (9)

G (2)
0 (u)=ecg(u)+

1
2u

1 1

`1 − 4u
− 12=ecg(u)+

1 − cg(u)
1 − 4u

. (11)

Following Fisher (1) we find the generating function G (2)(l, u) using the
bubble chaining technique. Any configuration with i osculations may be
obtained by concatenating i staircase polygons, moving the first pair of
steps to the end and appending a configuration with no osculations. The
generating function for configurations with i osculations is therefore

G (2)
i (u)=(ucg(u)) i G (2)

0 (u) (12)

and hence

G (2)(l, u)= C
.

i=0
G (2)

i (u) l i=
G (2)

0 (u)
1 − lucg(u)

. (13)

To obtain a recurrence relation for Z (2)
t (l) we note that, using (10)

1
1 − lucg(u)

=
l − 1 − 2lu − lucg(u)

l − 1 − 2lu − l2u2 (14)

and combining this with (13) and (11) and using (10) gives

G (2)(l, u)=
l − 1 − 3lu+leu(1 − 4u)+(1 − lu − e(1 − 4u)) cg(u)

(1 − 4u)(l − 1 − 2lu − l2u2)
(15)

and hence, for t \ 3,

(l − 1) Z (2)
t − 2(3l − 2) Z (2)

t − 1 − l(l − 8) Z (2)
t − 2+4l2Z (2)

t − 3

=(1 − e) Ct − (l − 4e) Ct − 1. (16)

For the case of vicious walkers, l=0, the relation is valid for t \ 2. In
order to find the generating function for three walk configurations we will
first look for a recurrence relation of a form similar to that of (16).
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3. THREE WALKS

In the case of three walks the bubble chaining technique is insufficient
to give an explicit formula and the results of the following sections are
obtained by fitting a recurrence relation to the sequence of partition func-
tions for increasing values of t. The partition functions are easily generated
using the partial difference equations

Z0(x, x, x3)=Z0(x1, x, x)=e

Z0(x1, x2, x3)=1

Zt(x, x, x3)=lZt − 1(x − 1, x+1, x3 − 1)+lZt − 1(x − 1, x+1, x3+1)

Zt(x1, x, x)=lZt − 1(x1 − 1, x − 1, x+1)+lZt − 1(x1+1, x − 1, x+1)

Zt(x1, x2, x3)= C
d1= ± 1

C
d2= ± 1

C
d2= ± 1

Zt − 1(x1+d1, x2+d2, x3+d3)

Z (3)
t (l)=Zt(0, 2, 4)

(17)

where Zt(x1, x2, x3) is the partition function for walks of length t which
start at positions x1 [ x2 [ x3. The first few partition functions are as
follows. Z (3)

t (l)=Z(3)
t, 1(l)+(E − 1) Z (3)

t, E(l) where

Z (3)
0, 1(l)=1 Z (3)

1, 1(l)=8

Z (3)
2, 1(l)=32+8l

Z (3)
3, 1(l)=160+72l+4l2

Z (3)
4, 1(l)=896+480l+64l2+4l3

Z (3)
5, 1(l)=5376+3136l+640l2+56l3+4l4

Z (3)
6, 1(l)=33792+20736l+5248l2+640l3+64l4+4l5

Z (3)
7, 1(l)=219648+139392l+40128l2+6304l3+720l4+72l5+4l6

and

Z (3)
0, E(l)=0 Z (3)

1, E(l)=4

Z (3)
2, E(l)=12+2l

Z (3)
3, E(l)=48+24l+2l2

Z (3)
4, E(l)=224+144l+20l2+2l3

Z (3)
5, E(l)=1152+832l+192l2+24l3+2l4

Z (3)
6, E(l)=6336+4896l+1456l2+216l3+28l4+2l5

Z (3)
7, E(l)=36608+29568l+10208l2+1888l3+280l4+32l5+2l6
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Each sequence was fitted to a recurrence relation of the form

C
d

r=0
ar(l) Zt − r=2 t C

n2

n=n1

bn(l) Ct − n

by trying values of the parameters d, n1 and n2. Sufficient terms of the
sequence were used to solve for the coefficients ar(l) and bn(l) (using
Mathematica Solve) and the resulting recurrence relation was used to
compare with the unused terms available. For both sequences a fit was
found with d=3, n1=−1 and n2=2. Since the partition function is linear
in E this was sufficient to obtain the E dependence with the result

2(l − 1)(l − 2) Z (3)
t − 2l(l2+3l − 8) Z (3)

t − 1+16l2Z (3)
t − 2+8l4Z (3)

t − 3=2 tRt

(18)

where

Rt=(1 − e)(4Ct+1 − l2Ct − 1) − (l − 4e)(4Ct − l2Ct − 2). (19)

This relation has not been proven but is almost certainly exact since far
more terms were generated than were required to determine the coefficients
and these were in agreement with the relation.

The chosen form of the recurrence relation was suggested by that for
two walkers but it was found necessary to include a factor 2 t on the right-
hand side multiplying the linear combination of Catalan numbers. Such
a factor occurs in the number of vicious three-walker star configurations
(the case l=E=0) which is known to be 2 tCt+1. (11, 13) Also when l=0 the
coefficient of E in Z (3)

t (l) is the number of vicious three-walker configura-
tions, two walks of which move to the same site on the last step. Using the
correspondence with Young tableaux (9) it may be shown, using a Pieri
formula, (22) that this number is 2 t(4Ct − Ct+1). Both of these results follow
from our conjectured recurrence relation. A rationale for the factor 2 t is the
fact that the walks only interact in pairs so that, at any step, one of the
walks can move in either direction without interacting.

Let Zt=2 tYt then

2(l − 1)(l − 2) Yt − l(l2+3l − 8) Yt − 1+4l2Yt − 2+l4Yt − 3=Rt. (20)

and with the initial conditions Y0=1, Y1=2(1+e) and Y2=5+3
2 l+

3e+1
2 el the generating function is found to be G (3)(l, u)=Y(l, 2u) where

Y(l, u)=
uf(l, u)+(4 − u2l2)(1 − lu − e(1 − 4u)) cg(u)

u(2(l − 2) − ul2)(l − 1 − 2ul − u2l2)
(21)
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and

f(l, u)=2(l(l − 3)+2e) − lu(l(l − 1) − 4(l − 3) e)+l2u2(l (1 − e) − 4e)
(22)

Notice that one of the quadratic denominator factors of (21) is the same as
that for two walkers and we may therefore use (14) to replace it by a factor
which is linear in l. A similar replacement is possible for the other factor
and we find

Y(l, u)=
eu(2+lu)+(2 − lu − e(2 − 8u+lu − lu2)) cg(u)

2u(1 − lucg(u))(1 − lu(1+cg(u))/2)
(23)

where the numerator has also been reduced in degree from cubic to linear.
Setting l=1 in (21) gives the total number of osculating configurations

G (3)(1, u)=
2u(u − 1+e(1 − 5u))+(1 − u)(1 − 2u − e(1 − 8u)) cg(2u)

4u2(1+u)
(24)

=
f(u) − (1 − u)(1 − 2u − e(1 − 8u)) `1 − 8u

16u3(1+u)
(25)

where f(u)=(1 − u)(1 − 6u) − e(1 − 13u+36u2+8u3). This agrees with the
result of ref. 17 (Eq. (4.36)) when e=1.

4. CRITICAL BEHAVIOUR

(a) l < 4

Notice that cg(u) increases monotonically from 0 to 1 as u goes from 0
to the singular point, u=1

4 , of cg(u) so that in this region of l and u the
denominators of both two and three walk functions are strictly positive. As
u Q

1
4 from below

G (2)(l, u)=
4

4 − l
5 2

`1 − 4u
+e − 2

4+l

4 − l
+O((1 − 4u)

1
2 )6 (26)

G (3)(l, u)=
4

(4 − l)2
52(8 − l)+e(4 − l) −

2(64 − l2) `1 − 8u

4 − l
+O(1 − 8u)6 .

(27)
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G (2)
e (l, u)=

4
4 − l

51 −
8 `1 − 4u

4 − l
+O(1 − 4u)6 (28)

G (3)
e (l, u)=

4
4 − l

[1 − (64 − 4l − l2) v2+8(64 − l2) v3+O(v4)] (29)

where v=(1 − 8u)
1
2/(4 − l).

(b) l > 4

If and only if l > 4, the denominator of G (2)(l, u) has a simple zero at

u (2)
c (l)=1/m (2)(l)=

`l − 1

l
<

1
4

(30)

and therefore the dominant singularity of G (2)(l, u) is a simple pole at this
position.

Notice that Y(u) also has a pole at this position which means that
there is a pole in G (3)(l, u) at 1

2 u (2)
c (l). However there is a second pole

which is closer to the origin arising from the other denominator in (23).
The dominant singularity of G (3)(l, u) is therefore a pole at

u (3)
c (l)=1/m (3)(l)=

l − 2
l2 (31)

(c) l=4

Setting l=4 in (15) gives the generating function for two walks at the
collapse transition as

G (2)(4, u)=
1

1 − 4u
+(e − 1) G (2)

e (4, u) (32)

where

G (2)
e (4, u)=

(4u − cg(u))
(1 − 4u)(3+4u)

=
1

2u(3+4u)
5 1

`1 − 4u
− 1 − 2u6 (33)

Notice that when e=1 the generating function is that for independent
walkers. This is the case for any number of walkers as explained earlier.
When e ] 1 there is a confluent singularity with c=1

2 which is the dominant
singularity of G (2)

e (4, u).
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Similar behaviour is found for three walkers except that uc=
1
8 instead

of 1
4 .

G (3)(4, u)=
1

1 − 8u
+(e − 1) G (3)

e (4, u) (34)

where

G (3)
e (4, u)=

(2u(1+16u) − (1 − 16u2) cg(2u))
2u(1 − 8u)(3+8u)

(35)

=
1

8u2(3+8u)
51 − 16u2

`1 − 8u
− 1 − 4u − 8u26 (36)

5. THE MICRO CANONICAL ENSEMBLE

The micro canonical partition function zt, i(E) is a sum over all t-step
configurations having i osculations and weighted by Ef where f is the
number of intersections on the final step. The main interest here is combi-
natorial.

In the case of two and three walks we obtain explicit expressions for
zt, i(E) as linear combinations of Ballot numbers. For three walks this is
probably the first such expression of its kind and comparison of the two
and three walk formulae may give a clue as to how tackle the problem of
more than three walkers. Since in this case f=0 or 1 the expressions
are linear in E. For n=2 and 3, the canonical partition function
Z (n)

t (l, E) — ;
# (n − 1) t

2
$

i=0 z (n)
t, i l

ief is also a linear combination of Ballot numbers
the coefficients of which are polynomials in l but no obvious simplication
arises on including the additional summation.

5.1. Two Walks

Now (23)

cg(u)y= C
.

t=y
B2t − 1, 2y − 1u t (37)

where B−1, −1=1; for j ] 1, B−1, j=Bj, −1=0 and for j, k \ 0, Bj, k is the
Ballot number

Bj, k=
(k+1) j!

(1
2 (j+k)+1)! (1

2 (j − k))!
(38)
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Expanding (12) gives the number of configurations with i osculations as

z (2)
t, i (E)=eB2t − 2i − 1, 2i+1+ C

t − 2i

a=0
4a(B2t − 2i − 2a − 1, 2i − 1 − B2t − 2i − 2a − 1, 2i+1) (39)

for t \ 2i and zero otherwise.

5.2. Three Walks

To obtain z (3)
t, i (E) from (23) requires the expansion of 1/(1 − lucg(u))

and 1/(1 − lu(1+cg(u))/2) in powers of l and then a further expansion of
the resulting functions cg(u)y and (1+cg(u))y in powers of u. The first of
these u expansions is the same as for the two walk problem and is given by
(37) and the second is (20)

(1+cg(u))y= C
.

s=0
B2s+y − 1, y − 1u s (40)

Expanding (23) directly in powers of l and u would therefore give an
expression for z (3)

t, i (E) involving products of Ballot numbers. However first
rewriting Y(l, u) in the form

Y(l, u)=Y1(l, u)+Y2(l, u) (41)

where

Y1(l, u)=
2(1 − e)+8eu − (1+e − 3eu) ul+eu3l2

u2l(1 − lu)(1 − lucg(u))
(42)

and

Y2(l, u)=
− 2(1 − e) − 8eu+2(1+e u) ul − 1

2 (1+e) u2l2

u2l(1 − lu)(1 − lu(1+cg(u))/2)
(43)

produces a linear combination of Ballot numbers. Thus defining

Xi, 1(u) — u i C
i

j=0
cg(u) j and Xi, 2(u) — u i C

i

j=0
2−j(1+cg(u)) j (44)

the generating function for configurations with exactly i osculations is then

G (3)
i (u)=Yi, 1(2u)+Yi, 2(2u) (45)
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where

Yi, 1(u)=
2(1 − e)+8e u

u2 Xi+1, 1(u) −
1+e − 3eu

u
Xi, 1(u)+e uXi − 1, 1(u) (46)

and

Yi, 2(u)=
− 2(1 − e) − 8e u

u2 Xi+1, 2(u)+
2(1+e u)

u
Xi, 2(u) −

1+e

2
Xi − 1, 2(u)

(47)

and further defining

bt, i, 1 — C
i

j=0
B2t − 2i − 1, 2j − 1 and bt, i, 2 — C

i

j=0
2−jB2t − 2i+j − 1, j − 1 (48)

gives the number of t-step configurations with i osculations as

z (3)
t, i (E)=2 t(yt, i, 1+yt, i, 2) (49)

where

yt, i, 1=2(1 − e) bt+2, i+1, 1+8e bt+1, i+1, 1 − (1+e) bt+1, i, 1+3e bt, i, 1+e bt − 1, i − 1, 1

(50)

and

yt, i, 2=−2(1 − e) bt+2, i+1, 2 − 8e bt+1, i+1, 2+2bt+1, i, 2+2e bt, i, 2 −
1+e

2
bt, i − 1, 2

(51)

When i=0 this collapses to the simpler formula for vicious walker
configurations

z (3)
t, 0(E)=2 tCt+1+e 2 t(4Ct − Ct+1) (52)
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